Junichi

記事一覧(13)

BlowFab

Blowfabは、レーザーカッターとブロー成形を組み合わせることで、高速に再利用可能な2.5Dオブジェクトを作成できるプロトタイピング手法である。マスキングテープ、PETからなる多層構造のプラスチック板をレーザー加工することで、粘着箇所と空洞箇所を作成する。その後、2枚を重ね、ヒータを用いて温めることで板が軟化し、粘着箇所が自然に熱融着する。軟化時に空気を注入することで、硬質なプロトタイプを作ることができる。さらにカットパターンを工夫したり、耐熱樹脂を組み合わせることで、任意の角度に曲げたり、耐熱フィルムを用いることで表面に凹凸加工を施すことができる。BlowFab is a prototyping method used to create a 2.5-dimensional prototype in a short time by combining laser cutting and blow molding techniques. The user creates adhesive areas and inflatable areas by engraving and cutting multilayered plastic sheets using a laser cutter. These adhesive areas are fused automatically by overlapping two crafted sheets and softening them with a heater. The user can then create hard prototypes by injecting air into the sheets. Objects can be bent in any direction by cutting incisions or engraving a resistant resin. The user can create uneven textures by engraving a pattern with a heat-resistant film.UIST2017 [honorable mention]Junichi Yamaoka, Ryuma Niiyama, and Yasuaki Kakehi. 2017. BlowFab: Rapid Prototyping for Rigid and Reusable Objects using Inflation of Laser-cut Surfaces. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST ’17). ACM, New York, NY, USA, 461-469.https://dl.acm.org/citation.cfm?id=3126624

ProtoMold

ProtoMold is a novel fabrication machine which uses interactive vacuum forming system for rapid prototyping. ProtoMold combines a dynamical shape-changing surface that consists of 12 × 8 linear actuators and a vacuum forming system. According to the shape of the surface, this system can mold various 2.5 dimensional objects quickly. Another characteristic of this system is that users can reuse molded objects and change their design; by applying tension and heat to a molded object, the object becomes flat and can be molded again. We also designed user several interaction methods for manipulating ProtoMold. In addition to loading predesigned data, the user can control the shape of the pin display directly using gesture input or physical objects.We propose several use scenarios for ProtoMold: changing the design of a plate based on objects placed on it, fabricating a facemask with a printed texture, and fabricating electrical devices with printed electronic circuits. By using this system, we conducted a user test and discuss the known limitations and potential applications of our system.ProtoMoldは、高速かつやり直し可能な2.5Dプリンターです。近年普及している一般的な3Dプリンターなどのデジタルファブリケーションツールは、造形に時間がかかり、材料は使い捨てです。そこで、高速かつやり直し可能な真空成形法(バキュームフォーム)と動的なピンディスプレイを組み合わせたProtoMoldを開発しました。ユーザは、ジェスチャ入力や、3Dスキャナなどを使って、ピンディスプレイを制御し、型を作ります。型の成形後、樹脂の板を熱で柔らかくし、吸引器で吸引することで、一瞬で型に定着させます。完成後、樹脂の板を熱することで平らになり、再び利用することができます。本装置を用いることで、日々の食材の形に応じたトレーを食事ごとに作り直すことができ、輸送や材料のコストを削減できます。またインクジェットプリンターと組み合わせることで、お面や地形のデザインが簡単にできます。さらに導電性インクを用いることで、回路を含めたプロトタイピングが可能です。例えば、LEDを内蔵した光る造形物や、複数のシートを組み合わせることでヘッドマウントディスプレイの試作など複雑な形状も試作可能です。さらに形だけではなく、印刷した模様や回路もやり直しができます。dl.acm.org/citation.cfm?id=3025498&CFID=934053129&CFTOKEN=46155125Junichi Yamaoka and Yasuaki Kakehi. 2017. ProtoMold: An Interactive Vacuum Forming System for Rapid Prototyping. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA, 2106-2115. DOI: doi.org/10.1145/3025453.3025498

MiragePrinter

The rapid proliferation of digital fabrication machines has resulted in creating an environment that enables more people to make various creations. From a viewpoint of Human Computer Interaction, interfaces bridging between works in the digital environment and the physical environment are necessary to support design for personal fabrication. To fill the gap, we propose a new type of fabrication machine called MiragePrinter that connects the users’ digital works and physical works seamlessly. More concretely, we make three contributions. Firstly, we propose a hardware, which can show floating images on a 3D printer stage. With this machine, users can simultaneously view optical images of their models and their physical manifestations in identical positions. We utilized the mid-air imaging display to superimpose images on physical objects. By using these optics, the system can show floating images without interfering the printing mechanism. Secondly, we have developed software and interfaces, so that users can control the displayed images and the printer actuations simultaneously. The user can design models using CAD software overlapped on the stage in real scale. In addition, users can manipulate models using face movements or a rotating stage. Thirdly, we open up new methods for fixing or customizing existing physical objects. [Editing 3D Objects While Printing] we suppose a scenario that a user makes a smartphone stand. The user can put the smart phone on the printing stage. He can test suitable angle for it physically and design the standby referring it directly. [Quick Scanning of Existing Objects] Users can scan and modify the shape of existing physical objects just by tracing the shape without using a high spec 3D scanner. [Direct Printing onto Existing Objects] This system enables the user to directly add new parts to an existing object (e.g. A new handle for an existing cap).Junichi Yamaoka and Yasuaki Kakehi. 2016. MiragePrinter: interactive fabrication on a 3D printer with a mid-air display. In ACM SIGGRAPH 2016 Studio (SIGGRAPH ’16). ACM, New York, NY, USA, , Article 6 , 2 pages. DOI:http://dl.acm.org/citation.cfm?id=2929489MiragePrinterは、立体映像を組み合わせた新しい3Dプリンターです。3Dプリンタの中に立体映像ディスプレイを配置することで、プリンタの中で設計(モデリング)ができます。完成形をプリンタの中でみることできます。立体映像と造形物は実寸大なので、既製品をプリンタの中に入れて、見比べながら設計したり(本物のペンを置いてペンスタンドを設計)、既成品の上に直接プリントすることができます。またプリント途中に、造形を止めて、設計をし直すことで、途中で形をかえることができます。

dePENd

2013Hand drawing is an activity not only for recording one’s message, but also for creation and thinking. This paper presents dePENd, a novel interactive system that assists handwriting using regular pens and paper. Our system utilizes the ferromagnetic feature of the metal tip of a regular ballpoint pen. The computer controlling the X and Y positions of the magnet under the surface of the table provides entirely new drawing experiences. For example, users can draw diagrams and pictures consisting of lines and circles, which are difficult to create by free-hand writing, easily using pens. By using digital pens, the system can change actions interactively according to the user’s movement. As for the applications of this system, this enables users to adopt interactive applications such as copying and pasting drafted pictures or scaling the pictures. In addition, we have proposed a communication tool with two dePENd systems. Furthermore we have implemented the system and evaluated the technical features of it. In this paper, we describe the detail of design and implementations of the device along with applications, technical evaluation and future prospects.近年注目されている機械を用いたファブリケーションに対して,dePENdは手作業と機械による作業を組み合わせた描画支援システムである.dePENdは,一般的な紙とペンを組み合わせ,触覚的なガイドを提示することで,日常的な手描きのスケッチを拡張・補助するシステムである.本システムはボールペンのペン先の強磁性に着目し,机内部の磁石の位置をXY ステージとコンピュータで制御することで,筆記時のペンを磁石で引きつけ、その動きを制御する.このシステムを用いることで,予めコンピュータに入力した図形や直線,円などを,ペンの動きに任せて紙に描画したり,その動きにゆるやかな制約を与えて,アレンジを楽しむなどの体験を提供できる.さらに,紙の上での位置を入力できるデジタルペンを用いることで,描画した絵をコンピュータに取り込み,描いた図形の複製や,遠隔地への転送などを行うことができる.身近な道具を介した触覚的なガイドにより,ユーザの描画スキルの向上や新たなコミュニケーションメディアとしての応用が期待される.CollaboratorsYasuaki Kakehi

enchanted scissors

enchanted scissorsは,身近なツールであるハサミに着目したインタラクティブファブリケーションインタフェースである.日常的な切る作業から複雑なペーパークラフトの制作の補助を目的としている.導電性インクで描かれた線に刃先が触れることで静電容量値が変化し,それに応じてハサミの開閉が動的に制御される.従って,制約の範囲内であればリアルタイムでユーザがオリジナリティーを加えることも可能である.これにより,ユーザからの入力とデバイスからのアウトプットが自然に繋がり,切る作業が円滑に行われる.紙に描かれた線をより正確に切る,またはある範囲の中で自由に形状表現を行う,など新たな体験が可能となり,ハサミを使用するモノづくりの創造性の幅を広げることを目標とする.enchanted scissors is a digitally controlled pair of scissors. It restricts areas that can be cut while requiring the user’s exertion of force and decision to execute each cut. Therefore, unlike a completely digitalized cutting device, the user can freely apply improvisations within the permitted areas in real-time. While using normal scissors, it is common to cut unintended parts or difficult to control the blades for cutting intricate details. enchanted scissors prevents these errors in advance by using two switchable programs to restrict the areas that the user can access. Both programs provide real-time feedback to the user during the cutting process as a regular pair of scissors would. This allows a comfortable connection of the user’s physical input and the output implemented by the device. We focused on the conductivity of the scissors’ metal blades and use conductive ink to mark the areas the user can cut or avoid to cut. When the blades come in contact with the conductive line consisting electric current flow, the servo motor contained in the device reacts; depending on the program running, the motor’s arm either locks or unlocks the scissors’ handles. enchanted scissors can be used to cut accurately, prevent undesirable accidents such as cutting unnecessary parts, and support people unskilled or experienced in handling scissors. Our objective is to have different types of users incorporate this device in multiple situations to improve their cutting performances: Children can learn how to coordinate scissors, experts may fabricate detailed paper crafts, and even the visually impaired can utilize this device to cut based on the tactile information received.学会発表:ACM SIGGRAPH2013, Posters(2013.7).受賞:SIGGRAPH ACM SRC 1st place (undergraduate)Mayu Meril Yamashita, Junichi Yamaoka, Yasuaki Kakehi

NeonDough

2012NeonDough is dynamic illuminating clay that contains a module that consists of sensors and LEDs. This interface can detect users’ actions such as combining, tearing and stretching apart, and change its colors and brightness dynamically according to the clay states. We held a crafting workshop using the NeonDough and analyzed children’s crafts and their processes.NeonDoughは粘土を繋げる・ちぎる・伸ばすなどの操作によって粘土の色を制御できる,粘土造形支援のための粘土インタフェースである。本研究は電極とLEDを内蔵したモジュールを導電性粘土内に入れ、電極間の抵抗値を計測しそれぞれの粘土の色に割り当て発光させる。具体的には緑色と赤色に発光する粘土を繋げることで、橙色というオリジナル色の粘土を生成し、キャラクタなどの粘土造形を行う。造形中に色を変化させることで創作を喚起させ、新しい粘土表現を実現することができる。CollaboratorsYasuaki KakehiReferenceJunichi Yamaoka and Yasuaki Kakehi:“NeonDough: Crafting With Interactive Lighted Clay,’’ACM SIGGRAPH 2012, Posters, (2012.8)山岡 潤一,筧 康明:“NeonDough: 光る粘土を用いた粘土細工の提案”,インタラクション2012 ,東京 (2012.3).山岡 潤一, 筧 康明:“導電性粘土を用いた変形・分割可能なタンジブルインタフェースの基礎検討’,エンタテインメントコンピューティング2011 (2011.10).

Tablescape Animation

2011From childhood, we often make stories extemporarily by drawing characters and/or playing puppets by hands. On the other hand, when we make animations using computer software, we usually have to use a mouse and a keyboard. For creating animation stories easily and extemporarily, more intuitive interfaces are needed. To improve these conditions, we focused on tabletop physical objects as an interface and propose a novel support system for creating animations named Tablescape Animation. In this system, users can draw characters by hands and control the character actions by handling tabletop physical objects as well as playing puppets. In this paper, we describe the system design of Tablescape Animation and workshops using this system. 現在普及しているCGアニメーション映像制作ソフトウェアは画面上で作業するため、コンピュータに関する専門的な知識を必要とします。これに対し、我々の研究は、コマを利用したタンジブルインタフェースにより、誰でも簡単に映像を制作する環境構築を目的とします。本システムでは、ユーザが手で描いたキャラクタがテーブル上に表示され、実際に手で動かしてキャラクタを動かすことで、最終的にアニメーションを構成することができます。また、キャラクタ描画、動き付けルール設定などを簡単な操作でサポートするためのソフトウェアの開発も行っています。さらに本成果は、子供を対象にしたワークショップ等を通じて実際に体験の場を設け、ユーザ評価を進めています。CollaboratorsYasuaki KakehiReferenceYasuaki Kakehi, Junichi Yamaoka, Daisuke Akatsuka, and Takeshi Naemura:“Tablescape Animation: A Support System for Making Animations Using Tabletop Physical Objects,”accepted to ACM SIGGRAPH 2009 Talks (2009.8).